Notes on the Derivation of Least Squares Policy Iteration

• "LSPI is a model-free, off-policy method which can use efficiently (and reuse in each iteration) sample experiences collected in any manner."

The state-action value function $Q^{\pi}(s, a)$ of any policy π , including a randomized policy, can be found by solving the Bellman equations:

$$Q^{\pi}(s,a) = \mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s,a,s') \sum_{a' \in \mathcal{A}} \pi(a';s') Q^{\pi}(s',a').$$

 $\pi(a; s)$ is the probability that policy π chooses action a in state s. We can write this in matrix form:

$$Q^{\pi} = \mathcal{R} + \gamma \mathbf{P} \mathbf{\Pi}_{\pi} Q^{\pi}.$$

- Q^{π} and \mathcal{R} are vectors of size $|\mathcal{S}| |\mathcal{A}|$.
- **P** is a stochastic matrix of size $|\mathcal{S}| |\mathcal{A}| \times \mathcal{S}$ where

$$\mathbf{P}((s,a),s') = \mathcal{P}(s,a,s').$$

• Π_{π} is a stochastic matrix of size $\mathcal{S} \times |\mathcal{S}| |\mathcal{A}|$ that describes π :

$$\mathbf{\Pi}_{\pi}\big(s',(s',a')\big) = \pi(a';s')$$

Then we can find Q^{π} by solving

$$(\mathbf{I} - \gamma \mathbf{P} \mathbf{\Pi}_{\pi}) Q^{\pi} = \mathcal{R}.$$

We can also think of this as a fixed point of the Bellman operator T_{π} :

$$(T_{\pi}Q)(s,a) = \mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s,a,s') \sum_{a' \in \mathcal{A}} \pi(a';s')Q(s',a').$$

Example

Recall Puterman's favorite 2-state Markov chain on Page 34 of *Markov Decision Processes*. Two states, s_1 and s_2 , and two actions, a_1 and a_2 . Then:

$$Q^{\pi} = [Q^{\pi}(s_1, a_1), Q^{\pi}(s_1, a_2), Q^{\pi}(s_2, a_1), Q^{\pi}(s_2, a_2)]^{\mathsf{T}}$$

$$\mathcal{R} = [5, 10, -1, -\infty]^{\mathsf{T}},$$

 $\quad \text{and} \quad$

$$\mathbf{P} = \begin{pmatrix} s_1, a_1 \\ (s_1, a_2) \\ (s_2, a_1) \\ (s_2, a_2) \end{pmatrix} \begin{pmatrix} s_1 & s_2 \\ .5 & .5 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$$

We construct the following policy:

$$\begin{aligned} & (s_1, a_1) \quad (s_1, a_2) \quad (s_2, a_1) \quad (s_2, a_2) \\ \Pi_{\pi} &= \frac{s_1}{s_2} \left(\begin{array}{ccc} .5 & .5 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right) . \end{aligned}$$

This results in

$$\mathbf{I} - \gamma \mathbf{P} \Pi_{\pi} = \begin{pmatrix} 1 - 0.25\gamma & -0.25\gamma & -0.5\gamma & 0. \\ 0. & 1 & -\gamma & 0. \\ 0. & 0. & 1 - \gamma & 0. \\ 0. & 0. & -\gamma & 1 \end{pmatrix}$$

and we can solve $(\mathbf{I} - \gamma \mathbf{P} \Pi_{\pi}) Q^{\pi} = \mathcal{R}$ for any value of γ to obtain Q^{π} .

Linear Architecture

We now consider approximating Q^{π} by a \hat{Q}^{π} , a linear combination of basis functions. Suppose we have $\phi_j : S \times A \to \mathbb{R}$ for j = 1, 2, ..., k. Define $\phi(s, a)$, column vector of size k, and

$$\phi(s,a) = \begin{pmatrix} \phi_1(s,a) \\ \dots \\ \phi_1(s,a) \\ \dots \\ \phi_k(s,a) \end{pmatrix}.$$

Define Φ is a $(|\mathcal{S}| |\mathcal{A}| \times k)$ matrix of the form

$$\mathbf{\Phi} = \begin{pmatrix} \phi(s_1, a_1)^{\mathsf{T}} \\ \dots \\ \phi(s, a)^{\mathsf{T}} \\ \dots \\ \phi(s_{|\mathcal{S}|}, a_{|\mathcal{A}|})^{\mathsf{T}} \end{pmatrix}.$$

If w_i^{π} is the weight for each function, we can write

$$\hat{Q}^{\pi} = \mathbf{\Phi} w^{\pi}$$

Least-Squares Fixed-Point Approximation

Recall that the Q-values of a policy π are a fixed point of the Bellman operator: $T_{\pi}Q^{\pi} = Q^{\pi}$. We could approximate the value function by finding a fixed point in the space of the linear approximations:

$$T_{\pi}\hat{Q}^{\pi} = \hat{Q}^{\pi}.$$

However, this approximation space is not guaranteed to contain a fixed point.

Recall that if \mathcal{M} is an *r*-dimensional subspace of \mathbb{R}^n , $\mathbf{M}_{n \times r}$ is a basis for \mathcal{M} , and

$$\mathbf{P}_{\mathcal{M}} = \mathbf{M}(\mathbf{M}^{\mathsf{T}}\mathbf{M})^{-1}\mathbf{M}^{\mathsf{T}},$$

then $\mathbf{P}_{\mathcal{M}}$ is the unique orthogonal projector onto \mathcal{M} . That is, for any $v = m + n \in \mathbb{R}^n$, where $m \in \mathcal{M}$ and $n \in \mathcal{M}^{\perp}$, $\mathbf{P}_{\mathcal{M}}v = m$.

Also, for vector $b \in \mathbb{R}^n$,

$$\min_{m \in \mathcal{M}} \|b - m\|_2 = \|b - \mathbf{P}_{\mathcal{M}}b\|_2.$$

That is, the vector in \mathcal{M} closest to b is the projection of b onto \mathcal{M} , $\mathbf{P}_{\mathcal{M}}b$.

We might hope to find a pseudo-fixed point of the Bellman operator on an approximation of the value function. Find the weights for a value function approximation \hat{Q}^{π} so that if we apply the Bellman operator (which may be outside the approximation space), then *project* this into the approximation space, we get the original approximation function. That is, we want weights w^{π} so that

$$\hat{Q}^{\pi} = \mathbf{\Phi}(\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}}(T_{\pi}\hat{Q}^{\pi})$$
$$= \mathbf{\Phi}(\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}}(\mathcal{R} + \gamma \mathbf{P}\mathbf{\Pi}_{\pi}\hat{Q}^{\pi}).$$
(1)

In effect, the weights make the Bellman operator perpendicular to the approximation space. We can manipulate (1) into solving a linear system for the weights:

$$\begin{aligned} \boldsymbol{\Phi}(\boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{\Phi})^{-1}\boldsymbol{\Phi}^{\mathsf{T}}(\mathcal{R}+\gamma\mathbf{P}\boldsymbol{\Pi}_{\pi}\hat{Q}^{\pi}) &= \hat{Q}^{\pi}\\ \boldsymbol{\Phi}(\boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{\Phi})^{-1}\boldsymbol{\Phi}^{\mathsf{T}}(\mathcal{R}+\gamma\mathbf{P}\boldsymbol{\Pi}_{\pi}\boldsymbol{\Phi}w^{\pi}) &= \boldsymbol{\Phi}w^{\pi}\\ \boldsymbol{\Phi}(\boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{\Phi})^{-1}\boldsymbol{\Phi}^{\mathsf{T}}(\mathcal{R}+\gamma\mathbf{P}\boldsymbol{\Pi}_{\pi}\boldsymbol{\Phi}w^{\pi}) - \boldsymbol{\Phi}w^{\pi} &= 0\\ \boldsymbol{\Phi}\left((\boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{\Phi})^{-1}\boldsymbol{\Phi}^{\mathsf{T}}(\mathcal{R}+\gamma\mathbf{P}\boldsymbol{\Pi}_{\pi}\boldsymbol{\Phi}w^{\pi}) - w^{\pi}\right) &= 0 \end{aligned}$$

Because Φ has linearly independent columns:

$$(\Phi^{\mathsf{T}}\Phi)^{-1}\Phi^{\mathsf{T}}(\mathcal{R}+\gamma\mathbf{P}\Pi_{\pi}\Phi w^{\pi}) - w^{\pi} = 0$$

$$(\Phi^{\mathsf{T}}\Phi)^{-1}\Phi^{\mathsf{T}}(\mathcal{R}+\gamma\mathbf{P}\Pi_{\pi}\Phi w^{\pi}) = w^{\pi}$$

$$\Phi^{\mathsf{T}}(\mathcal{R}+\gamma\mathbf{P}\Pi_{\pi}\Phi w^{\pi}) = (\Phi^{\mathsf{T}}\Phi)w^{\pi}$$

$$\Phi^{\mathsf{T}}\mathcal{R}+\Phi^{\mathsf{T}}(\gamma\mathbf{P}\Pi_{\pi}\Phi w^{\pi}) - (\Phi^{\mathsf{T}}\Phi)w^{\pi} = 0$$

$$\Phi^{\mathsf{T}}(\gamma\mathbf{P}\Pi_{\pi}\Phi w^{\pi} - \Phi)w^{\pi} = -\Phi^{\mathsf{T}}\mathcal{R}$$

$$\underbrace{\Phi^{\mathsf{T}}(\Phi-\gamma\mathbf{P}\Pi_{\pi}\Phi)}_{(k\times k)}w^{\pi} = \underbrace{\Phi^{\mathsf{T}}\mathcal{R}}_{(k\times 1)}$$

Thus for a policy matrix Π_{π} , we can find the least-squares weights minimizing the L_2 distance between \hat{Q} and the projection of $T_{\pi}\hat{Q}$ onto the Φ plane:

$$w^{\pi} = \left(\mathbf{\Phi}^{\mathsf{T}} \left(\mathbf{\Phi} - \gamma \mathbf{P} \mathbf{\Pi}_{\pi} \mathbf{\Phi} \right) \right)^{-1} \mathbf{\Phi}^{\mathsf{T}} \mathcal{R},$$

assuming the inverse exists. Koller and Parr (2000) showed this inverse exists for all but finitely many values of γ . The proof follows from the determinant of $\Phi^{\dagger} (\Phi - \gamma \mathbf{P} \Pi_{\pi} \Phi)$ being a polynomial of γ , and the polynomial only having a finite number of roots.

We can also use the $|\mathcal{S}| |\mathcal{A}| \times |\mathcal{S}| |\mathcal{A}|$ diagonal matrix Δ_{μ} weight the projection matrix according to $\mu(s, a)$:

$$w^{\pi} = \left(\mathbf{\Phi}^{\mathsf{T}} \Delta_{\mu} \left(\mathbf{\Phi} - \gamma \mathbf{P} \mathbf{\Pi}_{\pi} \mathbf{\Phi} \right) \right)^{-1} \mathbf{\Phi}^{\mathsf{T}} \Delta_{\mu} \mathcal{R}.$$

This is analogous to weighted regressions. Letting $\mathbf{A} = \mathbf{\Phi}^{\mathsf{T}} \Delta_{\mu} \left(\mathbf{\Phi} - \gamma \mathbf{P} \mathbf{\Pi}_{\pi} \mathbf{\Phi} \right)$ and $b = \mathbf{\Phi}^{\mathsf{T}} \Delta_{\mu} \mathcal{R}$, we can solve w^{T} by solving $k \times k$ linear system:

$$\mathbf{A}w^{\pi} = b.$$

If A and b were known, this linear system would be tractable for a reasonable

number of features; because, however, \mathbf{P} and \mathcal{R} are likely either unknown or too large, A and b cannot be directly computed.

LSTDQ

We can leave the matrix notation to get

$$\begin{aligned} \mathbf{A} &= \mathbf{\Phi}^{\mathsf{T}} \Delta_{\mu} \left(\mathbf{\Phi} - \gamma \mathbf{P} \mathbf{\Pi}_{\pi} \mathbf{\Phi} \right) \\ &= \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \phi(s, a) \mu(s, a) \left(\phi(s, a) - \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') \phi(s', \pi(s')) \right)^{\mathsf{T}} \\ &= \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \mu(s, a) \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') \left[\phi(s, a) \left(\phi(s, a) - \gamma \phi(s', \pi(s')) \right) \right)^{\mathsf{T}} \right] \end{aligned}$$

and

$$b = \Phi^{\mathsf{T}} \Delta_{\mu} \mathcal{R}$$

= $\sum_{s \in S} \sum_{a \in \mathcal{A}} \phi(s, a) \mu(s, a) \sum_{s' \in S} \mathcal{P}(s, a, s') R(s, a, s')$
= $\sum_{s \in S} \sum_{a \in \mathcal{A}} \mu(s, a) \sum_{s' \in S} \mathcal{P}(s, a, s') [\phi(s, a) R(s, a, s')]$

The matrix A is the sum of many rank one (outer product) matrices of the form

$$\phi(s,a) \Big(\phi(s,a) - \gamma \phi(s',\pi(s')) \Big)^{\mathsf{T}}$$

and b the sum of vectors of the form

$$\phi(s,a)R(s,a,s')$$

where the sum over every (s, a, s') pair and weighted by $\mu(s, a)$ and $\mathcal{P}(s, a, s')$. We can approximate **A** and *b* by sampling terms from this summation. "For unbiased sampling, *s* and *a* must be drawn jointly from μ , and *s'* must be drawn from $\mathcal{P}(s, a, s')$." If a finite set of samples

$$D = \{(s_i, a_i, r_i, s'_i) \mid i = 1, 2, \dots, L\}$$

is sampled according to μ_D , **A** and *b* can be approximated according by

$$\tilde{\mathbf{A}} = \frac{1}{L} \sum_{i=1}^{L} \left[\phi(s_i, a_i) \left(\phi(s_i, a_i) - \gamma \phi(s'_i, \pi(s'_i)) \right)^{\mathsf{T}} \right]$$
$$\tilde{b} = \frac{1}{L} \sum_{i=1}^{L} \left[\phi(s_i, a_i) r_i \right].$$

This method for approximating \tilde{w}^{π} is what Lagoudakis and Parr called LSTDQ. They also use the Sherman-Morrison formula to provide an algorithm that maintains the inverse of A at each step which would be useful for policy improvement.

LSPI

Given some policy and basis functions, we compute the approximate policy

$$\hat{Q}(s,a;w) = \sum_{i=1}^{k} \phi_i(s,a) w_i = \phi(s,a)^{\mathsf{T}} w$$

by computing the weights according to LSTDQ from a set of samples D. We can then construct a greedy policy π from this by:

$$\pi(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} \hat{Q}(s, a).$$

From policy π , we can repeat the same process *reusing the same samples to* compute w each time. We repeat this process until the policy (approximately) stops changing. This is least squares policy iteration.