Notes on the Derivation of Least Squares Policy Iteration

- "LSPI is a model-free, off-policy method which can use efficiently (and reuse in each iteration) sample experiences collected in any manner."

The state-action value function $Q^{\pi}(s, a)$ of any policy π, including a randomized policy, can be found by solving the Bellman equations:

$$
Q^{\pi}(s, a)=\mathcal{R}(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} \mathcal{P}\left(s, a, s^{\prime}\right) \sum_{a^{\prime} \in \mathcal{A}} \pi\left(a^{\prime} ; s^{\prime}\right) Q^{\pi}\left(s^{\prime}, a^{\prime}\right)
$$

$\pi(a ; s)$ is the probability that policy π chooses action a in state s. We can write this in matrix form:

$$
Q^{\pi}=\mathcal{R}+\gamma \mathbf{P} \Pi_{\pi} Q^{\pi}
$$

- Q^{π} and \mathcal{R} are vectors of size $|\mathcal{S}||\mathcal{A}|$.
- \mathbf{P} is a stochastic matrix of size $|\mathcal{S}||\mathcal{A}| \times \mathcal{S}$ where

$$
\mathbf{P}\left((s, a), s^{\prime}\right)=\mathcal{P}\left(s, a, s^{\prime}\right)
$$

- Π_{π} is a stochastic matrix of size $\mathcal{S} \times|\mathcal{S}||\mathcal{A}|$ that describes π :

$$
\boldsymbol{\Pi}_{\pi}\left(s^{\prime},\left(s^{\prime}, a^{\prime}\right)\right)=\pi\left(a^{\prime} ; s^{\prime}\right)
$$

Then we can find Q^{π} by solving

$$
\left(\mathbf{I}-\gamma \mathbf{P} \Pi_{\pi}\right) Q^{\pi}=\mathcal{R}
$$

We can also think of this as a fixed point of the Bellman operator T_{π} :

$$
\left(T_{\pi} Q\right)(s, a)=\mathcal{R}(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} \mathcal{P}\left(s, a, s^{\prime}\right) \sum_{a^{\prime} \in \mathcal{A}} \pi\left(a^{\prime} ; s^{\prime}\right) Q\left(s^{\prime}, a^{\prime}\right)
$$

Example

Recall Puterman's favorite 2-state Markov chain on Page 34 of Markov Decision Processes. Two states, s_{1} and s_{2}, and two actions, a_{1} and a_{2}. Then:

$$
Q^{\pi}=\left[Q^{\pi}\left(s_{1}, a_{1}\right), Q^{\pi}\left(s_{1}, a_{2}\right), Q^{\pi}\left(s_{2}, a_{1}\right), Q^{\pi}\left(s_{2}, a_{2}\right)\right]^{\top}
$$

$$
\mathcal{R}=[5,10,-1,-\infty]^{\top}
$$

and

$$
\mathbf{P}=\begin{gathered}
\\
\left(s_{1}, a_{1}\right) \\
\left(s_{1}, a_{2}\right) \\
\left(s_{2}, a_{1}\right) \\
\left(s_{2}, a_{2}\right)
\end{gathered}\left(\begin{array}{cc}
s_{1} & s_{2} \\
.5 & .5 \\
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right)
$$

We construct the following policy:

$$
\boldsymbol{\Pi}_{\pi}=\begin{gathered}
\left(s_{1}, a_{1}\right) \\
s_{1} \\
s_{2}
\end{gathered}\left(\begin{array}{cccc}
.5 & \left(s_{1}, a_{2}\right) & \left(s_{2}, a_{1}\right) & \left(s_{2}, a_{2}\right) \\
0 & 0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

This results in

$$
\mathbf{I}-\gamma \mathbf{P} \Pi_{\pi}=\left(\begin{array}{cccc}
1-0.25 \gamma & -0.25 \gamma & -0.5 \gamma & 0 . \\
0 . & 1 & -\gamma & 0 . \\
0 . & 0 . & 1-\gamma & 0 . \\
0 . & 0 . & -\gamma & 1
\end{array}\right)
$$

and we can solve $\left(\mathbf{I}-\gamma \mathbf{P} \Pi_{\pi}\right) Q^{\pi}=\mathcal{R}$ for any value of γ to obtain Q^{π}.

Linear Architecture

We now consider approximating Q^{π} by a \hat{Q}^{π}, a linear combination of basis functions. Suppose we have $\phi_{j}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ for $j=1,2, \ldots, k$. Define $\phi(s, a)$, column vector of size k, and

Define $\boldsymbol{\Phi}$ is a $(|\mathcal{S}||\mathcal{A}| \times k)$ matrix of the form

$$
\mathbf{\Phi}=\left(\begin{array}{c}
\phi\left(s_{1}, a_{1}\right)^{\top} \\
\ldots \\
\phi(s, a)^{\top} \\
\ldots \\
\phi\left(s_{|\mathcal{S}|}, a_{|\mathcal{A}|}\right)^{\top}
\end{array}\right)
$$

If w_{j}^{π} is the weight for each function, we can write

$$
\hat{Q}^{\pi}=\boldsymbol{\Phi} w^{\pi}
$$

Least-Squares Fixed-Point Approximation

Recall that the Q-values of a policy π are a fixed point of the Bellman operator: $T_{\pi} Q^{\pi}=Q^{\pi}$. We could approximate the value function by finding a fixed point in the space of the linear approximations:

$$
T_{\pi} \hat{Q}^{\pi}=\hat{Q}^{\pi}
$$

However, this approximation space is not guaranteed to contain a fixed point.
Recall that if \mathcal{M} is an r-dimensional subspace of $\mathbb{R}^{n}, \mathbf{M}_{n \times r}$ is a basis for \mathcal{M}, and

$$
\mathbf{P}_{\mathcal{M}}=\mathbf{M}\left(\mathbf{M}^{\top} \mathbf{M}\right)^{-1} \mathbf{M}^{\top}
$$

then $\mathbf{P}_{\mathcal{M}}$ is the unique orthogonal projector onto \mathcal{M}. That is, for any $v=$ $m+n \in \mathbb{R}^{n}$, where $m \in \mathcal{M}$ and $n \in \mathcal{M}^{\perp}, \mathbf{P}_{\mathcal{M}} v=m$.

Also, for vector $b \in \mathbb{R}^{n}$,

$$
\min _{m \in \mathcal{M}}\|b-m\|_{2}=\left\|b-\mathbf{P}_{\mathcal{M}} b\right\|_{2}
$$

That is, the vector in \mathcal{M} closest to b is the projection of b onto $\mathcal{M}, \mathbf{P}_{\mathcal{M}} b$.
We might hope to find a pseudo-fixed point of the Bellman operator on an approximation of the value function. Find the weights for a value function approximation \hat{Q}^{π} so that if we apply the Bellman operator (which may be outside the approximation space), then project this into the approximation space, we get the original approximation function. That is, we want weights w^{π} so that

$$
\begin{align*}
\hat{Q}^{\pi} & =\boldsymbol{\Phi}\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\top}\left(T_{\pi} \hat{Q}^{\pi}\right) \\
& =\boldsymbol{\Phi}\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\top}\left(\mathcal{R}+\gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \hat{Q}^{\pi}\right) . \tag{1}
\end{align*}
$$

In effect, the weights make the Bellman operator perpendicular to the approximation space.

We can manipulate (1) into solving a linear system for the weights:

$$
\begin{aligned}
\boldsymbol{\Phi}\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\top}\left(\mathcal{R}+\gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \hat{Q}^{\pi}\right) & =\hat{Q}^{\pi} \\
\boldsymbol{\Phi}\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\top}\left(\mathcal{R}+\gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \boldsymbol{\Phi} w^{\pi}\right) & =\boldsymbol{\Phi} w^{\pi} \\
\boldsymbol{\Phi}\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\top}\left(\mathcal{R}+\gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \boldsymbol{\Phi} w^{\pi}\right)-\boldsymbol{\Phi} w^{\pi} & =0 \\
\boldsymbol{\Phi}\left(\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\boldsymbol{\top}}\left(\mathcal{R}+\gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \boldsymbol{\Phi} w^{\pi}\right)-w^{\pi}\right) & =0
\end{aligned}
$$

Because $\boldsymbol{\Phi}$ has linearly independent columns:

$$
\begin{aligned}
&\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\top}\left(\mathcal{R}+\gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \boldsymbol{\Phi} w^{\pi}\right)-w^{\pi}=0 \\
&\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\top}\left(\mathcal{R}+\gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \boldsymbol{\Phi} w^{\pi}\right)=w^{\pi} \\
& \boldsymbol{\Phi}^{\top}\left(\mathcal{R}+\gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \boldsymbol{\Phi} w^{\pi}\right)=\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right) w^{\pi} \\
& \boldsymbol{\Phi}^{\top} \mathcal{R}+\boldsymbol{\Phi}^{\top}\left(\gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \boldsymbol{\Phi} w^{\pi}\right)-\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right) w^{\pi}=0 \\
& \boldsymbol{\Phi}^{\top}\left(\gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \boldsymbol{\Phi} w^{\pi}-\boldsymbol{\Phi}\right) w^{\pi}=-\boldsymbol{\Phi}^{\top} \mathcal{R} \\
& \boldsymbol{\Phi}^{\top}\left(\boldsymbol{\Phi}-\gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \boldsymbol{\Phi}\right) w^{\pi} \\
&=\underbrace{\boldsymbol{\Phi}^{\top} \mathcal{R}}_{(k \times k)}
\end{aligned}
$$

Thus for a policy matrix $\boldsymbol{\Pi}_{\pi}$, we can find the least-squares weights minimizing the L_{2} distance between \hat{Q} and the projection of $T_{\pi} \hat{Q}$ onto the $\boldsymbol{\Phi}$ plane:

$$
w^{\pi}=\left(\boldsymbol{\Phi}^{\top}\left(\boldsymbol{\Phi}-\gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \boldsymbol{\Phi}\right)\right)^{-1} \boldsymbol{\Phi}^{\top} \mathcal{R}
$$

assuming the inverse exists. Koller and Parr (2000) showed this inverse exists for all but finitely many values of γ. The proof follows from the determinant of $\boldsymbol{\Phi}^{\boldsymbol{\top}}\left(\boldsymbol{\Phi}-\gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \boldsymbol{\Phi}\right)$ being a polynomial of γ, and the polynomial only having a finite number of roots.

We can also use the $|\mathcal{S}||\mathcal{A}| \times|\mathcal{S}||\mathcal{A}|$ diagonal matrix Δ_{μ} weight the projection matrix according to $\mu(s, a)$:

$$
w^{\pi}=\left(\boldsymbol{\Phi}^{\boldsymbol{\top}} \Delta_{\mu}\left(\boldsymbol{\Phi}-\gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \boldsymbol{\Phi}\right)\right)^{-1} \boldsymbol{\Phi}^{\boldsymbol{\top}} \Delta_{\mu} \mathcal{R}
$$

This is analogous to weighted regressions. Letting $\mathbf{A}=\boldsymbol{\Phi}^{\top} \Delta_{\mu}\left(\boldsymbol{\Phi}-\gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \boldsymbol{\Phi}\right)$ and $b=\boldsymbol{\Phi}^{\top} \Delta_{\mu} \mathcal{R}$, we can solve w^{\top} by solving $k \times k$ linear system:

$$
\mathbf{A} w^{\pi}=b
$$

If A and b were known, this linear system would be tractable for a reasonable
number of features; because, however, \mathbf{P} and \mathcal{R} are likely either unknown or too large, A and b cannot be directly computed.

$\operatorname{LSTD} Q$

We can leave the matrix notation to get

$$
\begin{aligned}
\mathbf{A} & =\boldsymbol{\Phi}^{\boldsymbol{\top}} \Delta_{\mu}\left(\boldsymbol{\Phi}-\gamma \mathbf{P} \boldsymbol{\Pi}_{\pi} \boldsymbol{\Phi}\right) \\
& =\sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \phi(s, a) \mu(s, a)\left(\phi(s, a)-\gamma \sum_{s^{\prime} \in \mathcal{S}} \mathcal{P}\left(s, a, s^{\prime}\right) \phi\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)\right)^{\top} \\
& =\sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \mu(s, a) \sum_{s^{\prime} \in \mathcal{S}} \mathcal{P}\left(s, a, s^{\prime}\right)\left[\phi(s, a)\left(\phi(s, a)-\gamma \phi\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)\right)^{\top}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
b & =\boldsymbol{\Phi}^{\boldsymbol{\top}} \Delta_{\mu} \mathcal{R} \\
& =\sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \phi(s, a) \mu(s, a) \sum_{s^{\prime} \in \mathcal{S}} \mathcal{P}\left(s, a, s^{\prime}\right) R\left(s, a, s^{\prime}\right) \\
& =\sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \mu(s, a) \sum_{s^{\prime} \in \mathcal{S}} \mathcal{P}\left(s, a, s^{\prime}\right)\left[\phi(s, a) R\left(s, a, s^{\prime}\right)\right]
\end{aligned}
$$

The matrix \mathbf{A} is the sum of many rank one (outer product) matrices of the form

$$
\phi(s, a)\left(\phi(s, a)-\gamma \phi\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)\right)^{\top}
$$

and b the sum of vectors of the form

$$
\phi(s, a) R\left(s, a, s^{\prime}\right)
$$

where the sum over every $\left(s, a, s^{\prime}\right)$ pair and weighted by $\mu(s, a)$ and $\mathcal{P}\left(s, a, s^{\prime}\right)$. We can approximate \mathbf{A} and b by sampling terms from this summation. "For unbiased sampling, s and a must be drawn jointly from μ, and s^{\prime} must be drawn from $\mathcal{P}\left(s, a, s^{\prime}\right)$." If a finite set of samples

$$
D=\left\{\left(s_{i}, a_{i}, r_{i}, s_{i}^{\prime}\right) \mid i=1,2, \ldots, L\right\}
$$

is sampled according to μ_{D}, A and b can be approximated according by

$$
\begin{aligned}
\tilde{\mathbf{A}} & =\frac{1}{L} \sum_{i=1}^{L}\left[\phi\left(s_{i}, a_{i}\right)\left(\phi\left(s_{i}, a_{i}\right)-\gamma \phi\left(s_{i}^{\prime}, \pi\left(s_{i}^{\prime}\right)\right)\right)^{\top}\right] \\
\tilde{b} & =\frac{1}{L} \sum_{i=1}^{L}\left[\phi\left(s_{i}, a_{i}\right) r_{i}\right] .
\end{aligned}
$$

This method for approximating \tilde{w}^{π} is what Lagoudakis and Parr called LSTDQ. They also use the Sherman-Morrison formula to provide an algorithm that maintains the inverse of A at each step which would be useful for policy improvement.

LSPI

Given some policy and basis functions, we compute the approximate policy

$$
\hat{Q}(s, a ; w)=\sum_{i=1}^{k} \phi_{i}(s, a) w_{i}=\phi(s, a)^{\boldsymbol{\top}} w
$$

by computing the weights according to LSTD Q from a set of samples D. We can then construct a greedy policy π from this by:

$$
\pi(s)=\underset{a \in \mathcal{A}}{\arg \max } \hat{Q}(s, a) .
$$

From policy π, we can repeat the same process reusing the same samples to compute w each time. We repeat this process until the policy (approximately) stops changing. This is least squares policy iteration.

